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Abstract. We present flavour-symmetric results for the OZI-allowed couplings of quark–antiquark systems
to meson–meson channels in the harmonic-oscillator expansion. We tabulate their values for all possible
open and closed decay channels of pseudoscalar, vector, and scalar mesons. We compare the predictions
of a model that employs these flavour-symmetric couplings, both with the results of a model which uses
explicitly flavour-dependent couplings, and with experiment.

1 Introduction

Particle interactions are described by point-particle ver-
tices in fundamental theories. Quarks, the basic particles
for strong interactions, are point objects, to the best of
our knowledge. Hence they are assumed to interact via
point-particle vertices in the existing theories: through a
quark–gluon vertex in quantum chromodynamics (QCD)
[1], through a four-quark vertex in the Nambu–Jona–
Lasinio model (NJL) [2].

QCD exhibits good agreement with experiment, qual-
itatively for low and medium energies, and, moreover,
quantitatively at high energies [3], whereas NJL shows
good agreement with experiment only for energies be-
low 1 GeV [4]. So in the energy interval crucial to meson
physics, i.e., ranging from the two-pion threshold to en-
ergies as high as the states in the bottomonium system,
no fundamental theory possesses a satisfactory descriptive
power: QCD does not, because the relevant momentum
transfers are too low and thus the effective colour coupling
constant is too large for a perturbative approach, and NJL
does not, because the energies are too high. Consequently,
for a quantitative description of the spectra and scatter-
ing of mesons and baryons, neither of the two theories has
sufficient predictive power for the time being. Therefore,
the use of quark models is still opportune in this domain
of hadronic physics.

Now, ideally a quark model should be derived from
QCD, but this is rather utopian as yet. As a matter of
fact, not even a direct relation between QCD and con-
finement has been established and so confinement usually
has to be imposed on the valence quarks of the model [5].
Different models follow distinct strategies to achieve this,
and the manner in which confinement is approached dis-
tinguishes the models among each other. Moreover, each
model has its own very specific purpose, often not men-
tioned in too much detail by the authors, which makes

it difficult to compare models. For instance, there exist
heavy-quark potential models made to measure in order
to reproduce, with great accuracy, the radial and angu-
lar spectra of charmonium and bottomonium, as well as
the electromagnetic properties of these systems. But if the
same potentials are used in the light quark sector, the re-
sults are normally quite bad, especially for radial excita-
tions, and even possible relativistic corrections are insuffi-
cient to cure the discrepancies. Conversely, sophisticated
relativistic models for the light mesons usually fail to re-
produce the correct radial spacings in the charmonium
and bottomonium spectra.

On the other hand, most quark models treat hadrons
as manifestly stable bound states of quarks, simply ignor-
ing the fact that most hadrons are resonances, some of
them even extremely broad, so as to make their very exis-
tence questionable. Among the few exceptions, we should
mention the systematic inclusion of open and closed strong
decay channels in the Helsinki unitarised quark model
(HUQM) [6] and the Nijmegen unitarised meson model
(NUMM) [7], and further the coupled-channel approach
of Eichten and collaborators to charmonium [8] and bot-
tomonium [9]. Also of interest are a very recent improved
adiabatic formalism allowing a systematic low-energy ex-
pansion of the impact of thresholds on the hadronic spec-
tra, and a chiral confining model for scalar mesons [10].

The standard justification for ignoring strong decay is
the conjecture that its effect will be to produce predomi-
nantly imaginary mass shifts, thus allowing to first fit the
real parts of the spectra and then to treat the hadronic
widths a posteriori, with perturbative methods. However,
we know from fundamental principles in scattering theory
that real shifts are generally of the same order as or even
larger than the imaginary ones. Moreover, hadronic loops,
i.e., virtual decay channels, give rise to attractive forces, so
that the shifts due to, in principle, all closed decay chan-
nels must be added up, so as to produce a negative mass
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shift. So not even the true bound states can be treated as
pure quark states. The usual excuse is the unsupported as-
sertion that the effect of closed channels will be negligible,
except near threshold.

However, the NUMM, devised to simultaneously de-
scribe meson spectra and meson–meson scattering, from
the light pseudoscalars and vectors [7], via the usually
awkward scalars [11], all the way up to the cc̄ and bb̄ sec-
tors [12], showed that both premises are indeed wrong:
real shifts are generally comparable with or larger than
the imaginary ones, and the damping of closed channels is
insufficient to make their influence on the ground states of
the spectra negligible. On the contrary, due to the nodal
structure of the radial wave functions and the mentioned
additivity property, the shifts – real and negative – of the
ground states are usually largest [13]. Furthermore, no
drastic enhancement takes place near threshold, so that
these states cannot be singled out [14].

Having come to the conclusion that, for a truly quan-
titative description of the mesonic spectra, one must in-
clude the coupling to meson–meson channels; the crucial
questions to be raised are how to calculate the involved
coupling constants and which two-meson channels to take
along. Here, one should step back and have another look
at the QCD Lagrangian. Realising that, at least qualita-
tively, there should be no obvious disagreement between
QCD and whatever meson model to be used, we are led to
respect manifest flavour blindness. This will impose strin-
gent conditions on how couplings can be computed and
how to select classes of decay channels, since obviously
one cannot take into account an infinite number of these.

Models which describe the scattering of mesons
(and/or baryons) often imitate the fundamental theories
in the sense that interactions take place via effective point-
particle vertices. However, mesons (and baryons) are com-
posite systems, built out of strongly interacting valence
quarks, glue, and a quark–antiquark sea. So it seems obvi-
ous that, when mesons (and baryons) are considered point
objects, some information must get lost. In this paper we
will demonstrate that this can indeed be the case, and we
consider how this makes itself manifest in the flavour non-
independence of the strong interactions thus described,
when not dealt with carefully.

Point interactions are a powerful tool in constructing
theories that not only consider relativistic kinematics, but
also take into account the property of particle creation and
annihilation. However, in applying point interactions to
composite systems, one should include all hidden degrees
of freedom. Flavour is just one such degree of freedom.
Angular momentum and spin are others which should be
properly included. At present, it is opportune to model the
internal degrees of freedom and next to integrate them out
for the determination of the effective point couplings. A
consistent way of doing so in the framework of the 3P0
model, which moreover preserves flavour independence, is
described below. For the origins and some key aspects of
the 3P0 model, see [15].

The organisation of this paper is as follows. In Sect. 2,
we discuss the general philosophy behind a simple model

for flavour independence. This model is then exposed in
Sect. 3. The intensities of the three-meson vertices for me-
son decay into meson–meson pairs are given in Sect. 4. Re-
sults are discussed in Sect. 5. The consequences of flavour
(in)dependence are studied for two different, though sim-
ilar, models in Sect. 6. Some essential formulae are col-
lected in the Appendices A and B.

2 Flavour independence

Since strong interactions are independent of flavour (see
[16] for a recent experimental confirmation), the probabil-
ity to create a quark–antiquark pair out of the vacuum
cannot depend on the flavour of the quark and the anti-
quark. However, it obviously depends on the masses in-
volved. But if for a moment we assume that the flavour
masses, or at least the effective quark masses in the rele-
vant energy interval of the three lowest flavours, up, down
and strange, are equal, then the corresponding probabil-
ities of pair creation should be equal. Let us apply this
principle to the strong coupling of a meson to a pair of
mesons. Here, we assume that the related strong decay
processes are triggered by the creation of a flavourless
quark–antiquark pair.

In order to set the picture, we consider a simple model
in which the initial meson is described by a confined quark–
antiquark system of any flavour, given by

ab̄, (1)

where a and b represent any of the three flavours under
discussion, and the final pair of OZI allowed decay prod-
ucts is described by a system of two freely moving mesons,
which represent any of the three combinations

(aū) + (ub̄) , (ad̄) + (db̄) , (as̄) + (sb̄) . (2)

Also, let us, for a moment, assume that no further quan-
tum numbers are involved. Then, flavour blindness of the
strong interactions demands that the probabilities are
equal for the ab̄ system to decay into any of the three
channels of (2). In particular, when under full flavour sym-
metry the six mesons represented in (2) all have the same
mass, then the experimental results for the decay of sys-
tem (1) into any of the three channels of (2) should be
indistinguishable.

Let the three decay coupling constants of the process
under consideration be represented by, respectively,

g(a, b;u), g(a, b; d), g(a, b; s). (3)

Then, assuming flavour independence, we have the iden-
tities

{g(a, b;u)}2 = {g(a, b; d)}2 = {g(a, b; s)}2
, (4)

and, moreover, for the total decay intensity Γ (a, b) the
relation

Γ (a, b) = A
[
{g(a, b;u)}2 + {g(a, b; d)}2

+ {g(a, b; s)}2
]
, (5)
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where the proportionality factor A is also completely
flavour symmetric, which means constant here. Further-
more, one has that, under flavour symmetry, Γ (a, b) must
be independent of the flavours a and b.

Unfortunately, quarks are fermions and mesons are
spatially extended systems, and hence spin and spatial
quantum numbers do play an important role in the decay
of a meson into a pair of mesons. Nevertheless, it remains
possible to construct coupling constants which have the
property that the total decay probability is independent
of the flavour of the decaying meson in the limit of equal
masses, as we will see below.

3 Modeling full flavour symmetry

When a normalised wave function ψ is expanded on a com-
plete orthonormal basis φn, for n = 0, 1, 2, . . ., according
to

ψ =
∞∑

n=0

cnφn, (6)

one has for the expansion coefficients cn the property
∞∑

n=0

|cn|2 = 1. (7)

It is exactly property (7) that leads to flavour indepen-
dence.

Let us consider a system of two quarks and two an-
tiquarks, like any of the three combinations of (2). One
complete basis for the Hilbert space of such a system can
be constructed by taking products of the internal wave
function of the ab̄ system, specifying thereby its internal
spatial and flavour quantum numbers, the internal wave
function of the qq̄ (either uū, dd̄ or ss̄) system, and the rel-
ative wave function of the two subsystems. Another com-
plete basis for this Hilbert space consists of products of
the internal wave function of the aq̄ system, the inter-
nal wave function of the qb̄ system, and the relative wave
function of those two subsystems. Any wave function de-
scribing one of the two-quark–two-antiquark systems (2)
can be expanded in either of the bases defined above.

Such an expansion takes a particularly manageable
form if the four partons are supposed to move in a har-
monic oscillator potential with universal frequency. In that
case the spatial quantum numbers are linearly related to
the total energy of the system, which gives rise to finite
bases at each energy level and hence to finite expansions.
The flavour-symmetry condition (7) then becomes a finite
sum, which makes it easy for verification. Furthermore,
the restriction to harmonic oscillators is not a real limita-
tion, since any other basis can always be expanded in the
corresponding harmonic-oscillator basis, {n}, according to

〈M1M2 |V |M〉 =
∑

{n,n′}
〈M1M2 |n′ 〉 〈n′ |V |n〉 〈n |M 〉 . (8)

Here, V represents the interaction Hamiltonian which de-
scribes the transitions between the quark–antiquark sys-
tem ab̄ and the two-meson channels. We assume that the

spatial, or momentum-dependent, part of the matrix ele-
ments 〈n′ |V |n〉 is flavour independent and that the
flavour-dependent parts are constants.

The expansion of a particular many-particle wave func-
tion into a specific basis for well-defined subsystems, or
recoupling, has been studied a great deal in the past. The
related coefficients for the harmonic-oscillator basis are
known as Moshinsky brackets. Moshinsky brackets are well-
known coefficients of recoupling in nuclear physics; see [17]
for their definition. The group-theoretical implications of
parton recoupling in the harmonic-oscillator approxima-
tion have been studied exhaustively in [18]. Their appli-
cation to meson decay has for the first time been formu-
lated in [19]. A full generalisation for the spatial part of
the recoupling constants, which includes all possible quan-
tum numbers for any number of (bosonic) partons, can be
found in [20]. The inclusion of fermionic and flavour de-
grees of freedom, which leads to an analytic expression
for the coupling constants of any meson to any of its two-
meson real or virtual decay channels, is given in [21], for
the case that the new valence pair is created with 3P0
quantum numbers. A Fortran source program is available
on request.

4 Coupling constants for three-meson vertices

Within the formalism outlined above, we assume that
mesons can be classified by the quantum numbers of their
valence constituent quark–antiquark distributions, i.e.,

meson (j,M, `, s, n,M) . (9)

The quantum numbers j and M in (9) represent, respec-
tively, the spin of the meson and its z component. Alter-
natively, j represents the total angular momentum of the
relative motion in the quark–antiquark system which de-
scribes the meson. The quantum numbers `, s and n stand,
respectively, for the orbital angular momentum, the spin,
and the radial excitation of the constituents of the me-
son. Finally, M represents the 3 × 3 flavour matrix which
indicates the valences of the quark and the antiquark.

Here, we study the decay intensities for the following
processes:

meson (J, Jz, `, s, n,MC)
−→ meson (j1,M1, `1, s1, n1,MA)

+meson (j2,M2, `2, s2, n2,MB) . (10)

This is not a completely satisfactory notation, since the
spin-z components M1 and M2 of the decay products in
(10) are not supposed to be observable and, moreover, the
quantum numbers which characterise the relative motion
of the decay products are not specified in (10), despite be-
ing equally important. Let us indicate the orbital quantum
numbers of the two-meson system by means of an index,
r, and hence denote the orbital angular momentum of the
two mesons by `r, the total spin by sr, and the radial exci-
tation of the relative motion in the two-meson system by
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〈J, Jz, j1, `1, s1, n1, j2, `2, s2, n2, `r, sr, nr, A,B |J, Jz, `, s, n, C 〉
= Tr

{MAMBMC
T 〈J, Jz, j1, `1, s1, n1, j2, `2, s2, n2, `r, sr, nr |J, Jz, `, s, n,αABC 〉

+MBMAMC
T 〈J, Jz, j1, `1, s1, n1, j2, `2, s2, n2, `r, sr, nr |J, Jz, `, s, n,αBAC 〉} . (11)

Table 1. Particle identification used in this paper

symbol multiplet

t isotriplets
d isodoublets
8 isoscalar SU3 octet members
1 SU3 singlets

nr. The total angular momentum of the two-meson sys-
tem and its z component are, due to angular-momentum
conservation, given by J and Jz, respectively.

The decay probability for the process (10) is then, fol-
lowing the formalism developed in [21], given by the fol-
lowing matrix element: (see (11) on top of the page). The
spatial parts in each of the two terms of the transition
element (11) are denoted by

〈J, Jz, j1, `1, s1, n1, j2, `2, s2, n2, `r, sr, nr |J, Jz, `, s, n,α 〉,
(12)

and are defined and explained in Appendix A. Notice that
expression (11) manifestly preserves charge conjugation
and G parity.

Since for many purposes it is sufficient to have flavour-
independent coupling constants for the corresponding
strong decay channels of pseudoscalar, vector, and scalar
mesons, we tabulate the probabilities for the three-meson
vertices of those decay processes; for a pseudoscalar meson
in Table 2, for a vector meson in Table 3, and for a scalar
meson in Table 4. In order to maintain the tables as con-
densed as possible, we represent mesons by symbols and
by their quantum numbers. Since we assume that isospin
is indeed a perfect symmetry, we may represent all mem-
bers of an isomultiplet by the same symbol, for which we
just have chosen the letters and numbers t, d, 8 and 1,
according to the identification given in Table 1. Now let
us just analyse one horizontal line of one of the three ta-
bles, to make sure that the reader understands what the
numbers represent. Let us take the fourth line of Table 2.
In the first column we find four zeroes, representing the
internal spatial quantum numbers j, `, s, and n of the
first decay product, M1, which hence characterises a me-
son out of the lowest-lying (n = 0) pseudoscalar nonet. In
the second column we find similarly that the second decay
product, M2, represents a meson out of the lowest-lying
vector nonet. In the third column we find the quantum
numbers for the relative motion of M1 and M2, i.e., P -
wave (`r = 1) with total spin one (sr = 1) in the lowest
radial excitation (nr = 0). Since the table refers to the
real or virtual decays of the lowest-lying pseudoscalar me-
son nonet (J`sn = 0000, indicated in the top of the ta-
ble), the next four columns refer to its isotriplet member,

which is the pion. We then find that the pion couples with
a strength (1/6)1/2 to the tt (isotriplet–isotriplet) channel,
which, following Table 1 and the particle assignments dis-
cussed above to M1 and M2, i.e., pseudoscalar and vector,
respectively, represents in this case the πρ channel. Follow-
ing a similar reasoning, we find that the pion couples with
a strength (1/12)1/2 to KK∗. The total coupling of a pion
to pseudoscalar–vector channels is given in the column un-
der T by (1/4)1/2, which is the square root of the quadratic
sum of the two previous couplings, i.e., (1/6 + 1/12)1/2.

The next set of coupling constants refer to the real
or virtual (actually only virtual) decays of a kaon. We
find (1/8)1/2 to td, which represents both of the possibil-
ities pseudoscalar (isotriplet) + vector (isodoublet), i.e.,
πK∗, and pseudoscalar (isodoublet) + vector (isotriplet),
i.e., Kρ, each with half of the intensity that is given in
the table, and therefore one has for the kaon the coupling
constants (1/16)1/2 to πK∗ and (1/16)1/2 to Kρ. Next,
we find in the table that the kaon couples with (1/8)1/2 to
d8, which represents both of the possibilities, pseudoscalar
(isodoublet) + vector (SU3 octet isoscalar), i.e.,K + some
mixture of the ω and φ mesons, and pseudoscalar (SU3
octet isoscalar) + vector (isodoublet), i.e., some mixture
of η’s + K∗, each with half of the intensity that is given
in the table, and hence one extracts for the kaon the cou-
pling constants (1/16)1/2 to K + (ω, φ) and (1/16)1/2 to
(η, η′) +K∗. The kaon does not couple to the d1 channels
in the pseudoscalar + vector case, which represents the
channels with one isodoublet and one SU3 singlet. The
total coupling for the kaon to its pseudoscalar + vector
decay channels sums up to (1/4)1/2, as one verifies in the
column under T . The next two sets of coupling constants
refer similarly to the decay modes of the isoscalar part-
ners, either SU3 octet or SU3 singlet, of the pseudoscalar
nonet. Mixings can be done by hand as exemplified in Ap-
pendix B.

Notice that for the SU3 octet members one has flavour
symmetry for each horizontal line in the tables. This does
not go through for the SU3 singlet partners, with the ex-
ception of scalar-meson decay (Table 4), where all horizon-
tal lines have the same total coupling in each subsection
of the table. However, all columns under T sum up to 1,
representing full flavour symmetry once all possible decay
channels have been accounted for.

5 Results

The pole structures of the scattering matrices for P -wave
meson–meson scattering, or equivalently, the radial spec-
tra of heavy and light pseudoscalar and vector mesons,
were studied in the, largely non-relativistic, coupled chan-
nel NUMM, published in [7], hereafter referred to as B83,
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Table 2. Coupling constants for the decay processes of pseudoscalar mesons into meson pairs.
The interpretation of the content of the table is explained in the text

flavour channels and totals for M(J`sn = 0000)
SU3 octet members SU3 singlets

spatial q-numbers isotriplets isodoublets isoscalars
M1 M2 rel. (t) (d) (8) (1)
j`sn j`sn `sn tt dd t8 t1 T td d8 d1 T tt dd 88 81 T tt dd 88 11 T

0000 0110 000 - 1
24

1
36

1
18

1
8

1
16

1
144

1
18

1
8

1
24

1
72

1
72

1
18

1
8

1
12

1
9

1
36

1
36

1
4

1010 1100 000 - 1
24

1
36

1
18

1
8

1
16

1
144

1
18

1
8

1
24

1
72

1
72

1
18

1
8

1
12

1
9

1
36

1
36

1
4

1010 1110 000 1
6

1
12 - - 1

4
1
8

1
8 - 1

4 - 1
4 - - 1

4 - - - - -
0000 1010 110 1

6
1
12 - - 1

4
1
8

1
8 - 1

4 - 1
4 - - 1

4 - - - - -
1010 1010 110 - 1

12
1
18

1
9

1
4

1
8

1
72

1
9

1
4

1
12

1
36

1
36

1
9

1
4

1
6

2
9

1
18

1
18

1
2

Table 3. Coupling constants for the decay processes of vector mesons into meson pairs. The interpre-
tation of the content of the table is explained in the text

flavour channels and totals for M(J`sn = 1010)
SU3 octet members SU3 singlets

spatial q-numbers isotriplets isodoublets isoscalars
M1 M2 rel. (t) (d) (8) (1)
j`sn j`sn `sn tt dd t8 t1 T td d8 d1 T tt dd 88 81 T tt dd 88 11 T

0000 1100 010 - 1
72

1
108

1
54

1
24

1
48

1
432

1
54

1
24

1
72

1
216

1
216

1
54

1
24

1
36

1
27

1
108

1
108

1
12

0000 1110 010 1
18

1
36 - - 1

12
1
24

1
24 - 1

12 - 1
12 - - 1

12 - - - - -
1010 1100 010 1

18
1
36 - - 1

12
1
24

1
24 - 1

12 - 1
12 - - 1

12 - - - - -
1010 1110 010 - 1

18
1
27

2
27

1
6

1
12

1
108

2
27

1
6

1
18

1
54

1
54

2
27

1
6

1
9

4
27

1
27

1
27

1
3

0110 1010 010 - 1
24

1
36

1
18

1
8

1
16

1
144

1
18

1
8

1
24

1
72

1
72

1
18

1
8

1
12

1
9

1
36

1
36

1
4

0000 0000 100 1
36

1
72 - - 1

24
1
48

1
48 - 1

24 - 1
24 - - 1

24 - - - - -
1010 1010 100 1

108
1

216 - - 1
72

1
144

1
144 - 1

72 - 1
72 - - 1

72 - - - - -
0000 1010 110 - 1

18
1
27

2
27

1
6

1
12

1
108

2
27

1
6

1
18

1
54

1
54

2
27

1
6

1
9

4
27

1
27

1
27

1
3

1010 1010 120 5
27

5
54 - - 5

18
5
36

5
36 - 5

18 - 5
18 - - 5

18 - - - - -

Table 4. Coupling constants for the decay processes of scalar mesons into meson pairs. The interpretation of the
content of the table is explained in the text

flavour channels and totals for M(J`sn = 0110)
SU3 octet members SU3 singlets

spatial q-numbers isotriplets isodoublets isoscalars
M1 M2 rel. (t) (d) (8) (1)
j`sn j`sn `sn tt dd t8 t1 T td d8 d1 T tt dd 88 81 T tt dd 88 11 T

0000 0000 001 - 1
72

1
108

1
54

1
24

1
48

1
432

1
54

1
24

1
72

1
216

1
216

1
54

1
24

1
72

1
54

1
216

1
216

1
24

0000 0001 000 - 1
144

1
216

1
108

1
48

1
96

1
864

1
108

1
48

1
144

1
432

1
432

1
108

1
48

1
144

1
108

1
432

1
432

1
48

1010 1010 001 - 1
216

1
324

1
162

1
72

1
144

1
1296

1
162

1
72

1
216

1
648

1
648

1
162

1
72

1
216

1
162

1
648

1
648

1
72

1010 1011 000 - 1
432

1
648

1
324

1
144

1
288

1
2592

1
324

1
144

1
432

1
1296

1
1296

1
324

1
144

1
432

1
324

1
1296

1
1296

1
144

1010 1210 000 - 5
108

5
162

5
81

5
36

5
72

5
648

5
81

5
36

5
108

5
324

5
324

5
81

5
36

5
108

5
81

5
324

5
324

5
36

1100 1100 000 - 1
144

1
216

1
108

1
48

1
96

1
864

1
108

1
48

1
144

1
432

1
432

1
108

1
48

1
144

1
108

1
432

1
432

1
48

0110 0110 000 - 1
48

1
72

1
36

1
16

1
32

1
288

1
36

1
16

1
48

1
144

1
144

1
36

1
16

1
48

1
36

1
144

1
144

1
16

1110 1110 000 - 1
36

1
54

1
27

1
12
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Table 5. Quadratic coupling constants for the decay process of a scalar meson into a
pair of pseudoscalar mesons

initial meson decay products

[11] [23]

a0 or δ 1
3 (KK̄) + 2

3 (πηn) 1
3 (KK̄) and 2

3 (sum πη’s)

K∗
0 or κ 1

2 (Kπ) + 1
2 (Kηn+Kηs) 1

2 (Kπ) and 1
2 (sum Kη’s)

f0 or ε/S nn̄ 3
5 (ππ) + 1

5 (KK̄) + 1
5 (ηnηn) 1 (ππ), 1

3 (KK̄) and 1
3 (sum ηη’s)

f0 or ε/S ss̄ 1
2 (KK̄) + 1

2 (ηsηs) 2
3 (KK̄) and 2

3 (sum ηη’s)

in which the authors parametrised confinement by a uni-
versal frequency, the same for all flavours, including charm
and bottom. The universal frequency and a flavour-inde-
pendent overall coupling constant, representing the prob-
ability for the creation of a 3P0 light quark–antiquark
pair, were sufficient to obtain theoretical predictions for
phase shifts and scattering cross sections, or equivalently,
for central resonance positions and widths, which were in
reasonable agreement with the data. All relative couplings
were exactly taken as given in Tables 2 and 3, though some
of these had been derived in a more empirical way, and
were then extended in order to also include the heavy-
quark systems. This extension is quite trivial and will not
be discussed here. The only flavour non-invariance came
from the quark masses and the two-meson thresholds, all
other ingredients were the same for all flavours. Of course,
many of the decay channels were omitted, assuming their
thresholds to be high enough in energy, so as not to have
too much importance for the details of the scattering pro-
cesses at much lower energies. But this is only a practical
ingredient, not to be confused with flavour breaking.

In [22], the electromagnetic transitions in the charmo-
nium and bottomonium systems were studied, using the
quark and meson distributions from B83, with good re-
sults, indicating that not only the pole structures of the
scattering matrices, but also the related wave functions
stood the confrontation with experiment.

In [11], hereafter referred to as B86, the pole struc-
ture of the scattering matrix was inspected for S-wave
meson–meson scattering. Since the model was the same
as for B83, using exactly the same universal frequency,
flavour-independent overall coupling constant, and quark
masses, the calculated phase shifts and scattering cross
sections could be considered genuine theoretical predic-
tions. The agreement with the data was unexpected, espe-
cially because it had not been the objective of the model,
neither was the model constructed towards fitting the S-
wave scattering data. All relative couplings were exactly
taken as given in Table 4. Also here, only those two-meson
channels were taken into account which contain members
of the lowest-lying pseudoscalar and vector nonets. That
such a procedure does not break flavour invariance may
be explicitly verified by checking the first, third, and last
line in Table 4.

The observed flavour independence of the strong in-
teractions is a very important ingredient for low-energy

hadron physics and is woven into the NUMM; first, by the
universal frequency, which makes the ratio of the kinetic
term and the potential term of the model flavour inde-
pendent and hence also the level splittings; second, by the
intensities of the three-meson vertices for the coupling to
the various decay channels.

6 Comparison of two models

As stated in the Introduction, it is not easy to compare
meson models, but here we will pay attention to the com-
parison of the NUMM with a model [23], hereafter re-
ferred to as T95, which is tailor-made for scalar mesons
or, in other words, for S-wave meson–meson scattering.
The latter model, a revised version of the HUQM, was
confronted with experiment in an analysis published in
[24], hereafter referred to as TR96. Based on the good
agreement of its theoretical predictions with the available
experimental phase shifts, one may be inclined to accept
all further conclusions presented in the same publication,
such as the existence and location of resonances. How-
ever, the authors failed to find the complex-energy pole
corresponding to the established f0(1500) resonance. Fur-
thermore, they also did not find a light K∗

0 , i.e., the old
κ, somewhere between 700 and 1100 MeV. Although the
latter resonance is not (yet) established experimentally,
it has recently received renewed phenomenological and
theoretical support [25–27] (see also [28]). Moreover, its
absence from nature would imply a breaking of the con-
ventional nonet pattern for mesons. On the other hand,
if a light K∗

0 is confirmed, then there exist unmistakable
experimental candidates for two complete scalar nonets,
as predicted by B86. So it is intriguing to figure out why
model T95/TR96, which is very similar in its philosophy
and also in observing a resonance doubling, at least for
some states, does not reproduce this resonance.

In Table 5, we collect the intensities for strong scalar-
meson decay into a pair of pseudoscalar mesons, under the
assumption that pions, kaons and etas have equal masses,
as given by models B86 and T95/TR96. For the purpose
of comparison, we have multiplied the values given in B86
by a constant factor. The resulting values can also be read
from the first line of Table 4 when renormalised (i.e., mul-
tiplied by a factor 24), and when isoscalar mixing has been
dealt with as outlined in Appendix B. Now notice that, by
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using (5), the total decay intensities stemming from [11]
become equal to A for all scalar mesons, as demanded by
flavour blindness, i.e.,

Γ (a0) = Γ (κ) = Γ (f0, nn̄) = Γ (f0, ss̄) = A. (13)

For model T95/TR96, the comparable intensities are de-
rived from a point-particle approach to the three-meson
vertex, which results in coupling constants given by

λTr (MAMBMC ± MBMAMC) , (14)

where A, B and C stand for the three mesons involved at
the vertex C → AB, and MX is the 3×3 flavour matrix for
meson X. It is understood in (14) that either the symmet-
ric or the antisymmetric trace is to be taken, depending
on the sign of the product of the three charge-conjugation
quantum numbers. In this way, charge conjugation and G
parity are automatically preserved.

Flavour symmetry as from (14), and using formula (5),
yields in this case the flavour-dependent result

Γ (a0) = Γ (κ) =
3
5
Γ (f0, nn̄) =

3
4
Γ (f0, ss̄) = A, (15)

in contrast with the results shown in (13).
The reason for this discrepancy can be explained as fol-

lows. The vertex (14) is SU(3)flavour symmetric. This does,
however, not imply flavour blindness, since the strengths
for SU(3)flavour-octet meson decays may (and do here!)
differ from the strengths of the SU(3)flavour-singlet meson
decays. Moreover, the coupling constant λ of the vertex
(14) only applies to the specific case of the scalar to two
pseudoscalar mesons. For other vertices, other couplings
have to be chosen and adjusted to the data.

In our appraoch, all three-meson vertices are related,
since they all follow from (11), and therefore make it pos-
sible to define the universal coupling constant that is one
of the cornerstones of model B83. Moreover, flavour blind-
ness is guaranteed. In order to see this for the specific de-
cays under discussion here, let us have a closer look at the
normalisation factor which we find in (16) of Appendix
(A). This factor stems from the initial four-particle wave
function of the two qq̄ pairs. Now, for the SU(3)flavour-
singlet lowest-lying (n = 0) scalar (JPC = 0++) mesons,
both pairs have the same quantum numbers in the 3P0
model, and hence a non-trivial wave-function normalisa-
tion, leading to the result (13).

It appears to be due to the flavour dependence of (15),
in the sense which we explained above, that the authors of
TR96, which based their calculations on the coupling con-
stants from T95, did not observe any resonance doubling
for the isodoublet and one of the two isoscalars, and there-
fore miss the K∗

0 (700-1100) and f0(1500) poles needed to
complete two scalar-meson nonets.

The normalisation factors that are relevant to (13) are
given in (16) and (17) of Appendix A. In Appendix B,
we show how they lead exactly to the factors 3/5 and 3/4
which are necessary to compensate the flavour dependence
of (15).

A Rearrangement coefficients

The spatial parts of the matrix elements (11) are, following
the formalism developed in [21], in the approximation of
equal flavour masses just given by Clebsch–Gordonary and
some overlap integrals, amounting to

〈J, Jz, j1, `1, s1, n1, j2, `2, s2, n2, `r, sr, nr |J, Jz, `, s, n, αABC 〉
〈J, Jz, j1, `1, s1, n1, j2, `2, s2, n2, `r, sr, nr |J, Jz, `, s, n, αBAC 〉

}

=
1√

1 + 〈C |SU(3)flavour-singlet 〉δ(2s+1`J ,3 P0)δn0

×
∑

{µ}, {m}, {M}

(
sr `r J

Mr mr Jz

)(
j1 j2 sr

M1 M2 Mr

)(
`1 s1 j1

m1 µ1 M1

)

×
(

`2 s2 j2

m2 µ2 M2

)(
` s J

m` µs Jz

)(
1 1 0

m −m 0

)(
1
2

1
2 s1

µa µb µ1

)

×
(

1
2

1
2 s2

µc µd µ2

)

×




(
1
2

1
2 s

µa µd µs

)(
1
2

1
2 1

µc µb −m

)
n ` m` n1 `1 m1

0 1 m n2 `2 m2

0 0 0 nr `r mr




αABC(
1
2

1
2 s

µc µb µs

)(
1
2

1
2 1

µa µd −m

)
n ` m` n1 `1 m1

0 1 m n2 `2 m2

0 0 0 nr `r mr




αBAC

,

(16)

where the sum is over all µ’s, m’s, and M ’s that appear
in the formula, and where

〈C |SU(3)flavour-singlet 〉
= 0 for |C〉 orthogonal to the

SU(3)flavour-singlet state,
1
3 for |C〉 = |uū〉, ∣∣dd̄〉, or |ss̄〉,
2
3 for |C〉 =

√
1
2

{|uū〉 +
∣∣dd̄〉} ,

1 for |C〉 =
√

1
3

{|uū〉 +
∣∣dd̄〉+ |ss̄〉} , (17)

and where
δ(2s+1`J ,

3 P0) = δJ0δ`1δs1. (18)

The central part of (16) is constituted by the rearrange-
ment coefficients, which can be given by the following di-
agrammatic representation
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n ` m` n1 `1 m1

0 1 m n2 `2 m2

0 0 0 nr `r mr




α

= (−1)n + n1 + n2 + nr

(
π

4

)3√
(n!n1!n2!nr!)

×

√√√√(Γ
(
2n + ` + 3

2

)
Γ
(

5
2

)
Γ
(

3
2

)
Γ
(
2n1 + `1 + 3

2

)
Γ
(
2n2 + `2 + 3

2

)
Γ
(
2nr + `r + 3

2

)
(2` + 1) (3) (2`1 + 1) (2`2 + 1) (2`r + 1)

)

×
∑

{nij , `ij , mij}

∏
i, j

(αij)2nij + `ij (2`ij + 1)
nij !Γ

(
nij + `ij + 3

2

)δ (2 [n11 + n21 + n31] + `11 + `21 + `31, 2n + `)

×δ (2 [n12 + n22 + n32] + `12 + `22 + `32, 1) δ (2 [n13 + n23 + n33] + `13 + `23 + `33, 0)
×δ (2 [n11 + n12 + n13] + `11 + `12 + `13, 2n1 + `1) δ (2 [n21 + n22 + n23] + `21 + `22 + `23, 2n2 + `2)
×δ (2 [n31 + n32 + n33] + `31 + `32 + `33, 2nr + `r)

×
(

`11 `21 `31 `

m11 m21 m31 m`

)(
`12 `22 `32 1

m12 m22 m32 m

)(
`13 `23 `33 0

m13 m23 m33 0

)

×
(

`11 `12 `13 `1

m11 m12 m13 m1

)(
`21 `22 `23 `2

m21 m22 m23 m2

)(
`31 `32 `33 `r

m31 m32 m33 mr

)
, (20)



n ` m` n1 `1 m1

0 1 m n2 `2 m2

0 0 0 nr `r mr




α

= (19)

α33����
α23

��������

��
α13

�
�

�
�

�
�

�
�

��

HHHHHHHH
α32

HHHH

α22��������
α12

����α11HHHH
α21

HHHHHHHH

@@
α31

@
@

@
@

@
@

@
@

@@
0, 0, 0

0, 1,m

n, `,m`

nr, `r,mr

n2, `2,m2

n1, `1,m1

The upper-left external line carries the relevant quantum
numbers of the initial meson in (10), the middle-left exter-
nal line the quantum numbers of the 3P0 qq̄ pair, and the
lower-left external line the quantum numbers of the rel-
ative motion of the two quark–antiquark systems, which,
to lowest order, is supposed to be in its ground state. The
external lines on the right-hand side of the diagram carry
the quantum numbers of the decay products of (10) and
their relative motion.

As explained in [20], each of the internal lines ij of
the diagram in (19) carries the set of quantum numbers
{nij , `ij ,mij}, over all possibilities of which must be
summed, thereby respecting partial quantum-number con-
servation at each vertex, i.e., (see (20) on top of this page)
where the angular-momenta recoupling coefficients are de-

fined by(
`1 `2 `3 `

m1 m2 m3 m

)

=
∑
L,M

(
`1 `2 L

m1 m2 M

)(
L `3 `

M m3 m

)(̀
1 `2 L

0 0 0

)(
L `3 `

0 0 0

)
, (21)

and where the α matrices, for the case of equal constituent
flavour masses, are given by

αABC =




1
2

1
2 −

√
1
2

1
2

1
2

√
1
2

−
√

1
2

√
1
2 0


 and

αBAC =




1
2

1
2

√
1
2

1
2

1
2 −

√
1
2√

1
2 −

√
1
2 0


 . (22)

The allowed values for the quantum numbers of the in-
ternal lines of diagram (19), given by nij and `ij in (20),
are non-negative integers and hence, because of partial
quantum-number conservation at each vertex of the dia-
gram, which is moreover expressed by the Kronecker deltas
in (20), we find

n12 = n22 = n32 = n13 = n23 = n33 = `13 = `23

= `33 = 0, (23)

which, also substituting the α matrices (22), simplifies the
expression for the rearrangement coefficients to (see (24)
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n ` m` n1 `1 m1

0 1 m n2 `2 m2

0 0 0 nr `r mr


{

αABC

αBAC

}

= (−1)n + n1 + n2 + nr

(
π

4

)3√
(n!n1!n2!nr!)

×

√√√√(Γ
(
2n + ` + 3

2

)
Γ
(

5
2

)
Γ
(

3
2

)
Γ
(
2n1 + `1 + 3

2

)
Γ
(
2n2 + `2 + 3

2

)
Γ
(
2nr + `r + 3

2

)
(2` + 1) (3) (2`1 + 1) (2`2 + 1) (2`r + 1)

)

×
(

1
2

)2n + ` + 1 − nr − 1
2 `r

∑
{nij , `ij , mij}




(−1)`31

(−1)`32




1
n11!n21!n31!

(2`11 + 1) (2`12 + 1)
Γ
(
n11 + `11 + 3

2

)
Γ
(
`12 + 3

2

)
Γ
(

3
2

)
× (2`21 + 1) (2`22 + 1)

Γ
(
n21 + `21 + 3

2

)
Γ
(
`22 + 3

2

)
Γ
(

3
2

) (2`31 + 1) (2`32 + 1)
Γ
(
n31 + `31 + 3

2

)
Γ
(
`32 + 3

2

)
Γ
(

3
2

)δ (2 [n11 + n21 + n31] + `11 + `21 + `31, 2n + `)

×δ (`12 + `22 + `32, 1) δ (2n11 + `11 + `12, 2n1 + `1) δ (2n21 + `21 + `22, 2n2 + `2) δ (2n31 + `31 + `32, 2nr + `r)

×
(

`11 `21 `31 `

m11 m21 m31 m`

)(
`11 `12 `1

m11 m12 m1

)(̀
11 `12 `1

0 0 0

)(
`21 `22 `2

m21 m22 m2

)(̀
21 `22 `2

0 0 0

)(
`31 `32 `r

m31 m32 mr

)(̀
31 `32 `r

0 0 0

)
. (24)

on top of this page). Notice that the Kronecker deltas in
(24) amount to

2n+ `+ 1 = 2 (n1 + n2 + nr) + `1 + `2 + `r, (25)

which is precisely the important relation that limits the
number of possible decay channels.

Moreover, for an initial pseudoscalar or vector meson
out of the lowest-lying flavour nonets, one has in (11) for
the qq̄ quantum numbers n and `:

n = ` = 0. (26)
Consequently, through the use of the Kronecker deltas in
(24), we find for the quantum numbers of the internal lines
of diagram (19) that

n11 = n21 = n31 = `11 = `21 = `31 = 0, (27)

and moreover

n1 = n2 = nr = 0 and `1 + `2 + `r = 1. (28)

Relations (28) can be checked against the first three colums
of Tables 2 and 3, where for all possible channels the radial
excitations n1, n2, or nr vanish, and, moreover, the sums
of `1, `2, and `r equal 1. This is a consequence of (25) and
drastically limits the number of possible quantum num-
bers and hence decay channels.

For the relevant rearrangement coefficients we find, us-
ing (24), in this case


0 0 0 0 `1 m1

0 1 m 0 `2 m2

0 0 0 0 `r mr


{

αABC

αBAC

}

=
( 1

2

)1 − 1
2`r




+1

(−1)`r


 δ (`1 + `2 + `r, 1) . (29)

For the decay of a meson out of the lowest-lying scalar
nonet, one has

n = 0 and ` = s = 1, (30)

and hence, by the use of (24), one obtains for the relevant
rearrangement coefficients in this case




0 1 m` n1 `1 m1

0 1 m n2 `2 m2

0 0 0 nr `r mr


{

αABC

αBAC

}

= (−1)n1 + n2 + nr8
√

(n1!n2!nr!)

×

√√√√(Γ
(
2n1 + `1 + 3

2

)
Γ
(
2n2 + `2 + 3

2

)
Γ
(
2nr + `r + 3

2

)
2π3/2 (2`1 + 1) (2`2 + 1) (2`r + 1)

)

×
(

1
2

)2n1 + 2n2 + nr + `1 + `2 + 1
2 `r

×
∑

{nij , `ij , mij}




(−1)`31

(−1)`32


 δ (`11 + `21 + `31, 1)

× δ (`12 + `22 + `32, 1) δ (`11 + `12, 2n1 + `1)
× δ (`21 + `22, 2n2 + `2) δ (`31 + `32, 2nr + `r)

×
(

`11 `12 `1

m11 m12 m1

)(̀
11 `12 `1

0 0 0

)(
`21 `22 `2

m21 m22 m2

)

×
(̀

21 `22 `2

0 0 0

)(
`31 `32 `r

m31 m32 mr

)(̀
31 `32 `r

0 0 0

)
. (31)
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B Mixing for scalar mesons

Since we assume 3P0 quantum numbers for the creation
of a qq̄ pair out of the vacuum, the mixing of the isoscalar
flavour-nonet members for lowest-lying scalar-meson de-
cay is not completely trivial. So we will outline here some
of the necessary ingredients.

In order to simplify the discussion, let us separate the
normalisation factor and the summations in (16). More-
over, the two Kronecker deltas under the square root in
formula (16) do not vanish for the lowest-lying scalar
mesons. Therefore, let us denote

〈0, 0, j1, `1, s1, n1, j2, `2, s2, n2, `r, sr, nr |0, 0, 1, 1, 0, αABC 〉

〈0, 0, j1, `1, s1, n1, j2, `2, s2, n2, `r, sr, nr |0, 0, 1, 1, 0, αBAC 〉




=
1√

1 + 〈C |SU(3)flavour-singlet 〉
×




〈ABC〉

〈BAC〉
, (32)

where 〈ABC〉 stands for the upper summation in (16) and
〈BAC〉 for the lower.

As one notices from (16), (19) and (20) or just only
from (31), the transition coefficients 〈ABC〉 and 〈BAC〉
do not, for full flavour symmetry, i.e., for equal up, down
and strange quark masses, depend on the flavour contents
of the three mesons A, B, and C involved in the tran-
sition process (10), but just on the orbital and intrinsic
spin quantum numbers of the system, which circumstance
is also expressed by the notation of (12). In fact, for the
case of equal quark masses, these transition coefficients
are equal for each different set of spatial quantum num-
bers, up to a sign. This sign is positive for all possible
couplings in the case of the lowest-lying scalar mesons.
Consequently, since for Table 5 only the transitions be-
tween scalar mesons and pairs of pseudoscalar mesons are
relevant, and for mixing in general only the restriction to
a specific set of spatial quantum numbers has to be con-
sidered, we may here put

〈ABC〉 = 〈BAC〉. (33)

For the transitions of the flavour-octet members to pairs
of mesons, one has, according to (17), a unity normalisa-
tion factor. Let us study then the matrix elements for a
representant, ud̄, of the isotriplets, which is denoted by t
in Table 4, coupled to an isoscalar, φ, and an isotriplet,
for which we also take as a representant the ud̄ state, and
which, moreover, is also denoted by t in Table 4, i.e.,〈(

ud̄
)
φ
∣∣ud̄〉. (34)

If φ represents the flavour-octet-member isoscalar φ8, we
find 〈(

ud̄
)
φ8
∣∣ud̄〉 =

〈(
ud̄
)√ 1

6

(
uū+ dd̄− 2ss̄

) ∣∣ud̄〉.
Obviously, the matrix element for the ss̄ contribution to
φ8 vanishes, hence

〈(
ud̄
)
φ8
∣∣ud̄〉=√ 1

6

{〈(
ud̄
)
(uū)

∣∣ud̄〉+
〈(
ud̄
) (
dd̄
) ∣∣ud̄〉} ,

which, also using (33), gives

〈(
ud̄
)
φ8
∣∣ud̄〉 =

√
1
6 {〈BAC〉 + 〈ABC〉}

=
√

2
3 〈ABC〉. (35)

Following a similar reasoning when φ in (34) represents the
flavour-singlet isoscalar φ1, we find for its matrix elements
the result〈(

ud̄
)
φ1
∣∣ud̄〉 =

〈(
ud̄
)√ 1

3

(
uū+ dd̄+ ss̄

) ∣∣ud̄〉
=
√

4
3 〈ABC〉. (36)

In Table 4, for the quadratic matrix elements under t8 and
t1 in the sector isotriplets, one may verify the factor 2 that
follows from (35) and (36).

For the ideally mixed isoscalars, φn (non-strange) and
φs (strange) defined by

φn =
√

1
2

(
uū+ dd̄

)
=
√

2
3φ1 +

√
1
3φ8 and

φs = ss̄ =
√

1
3φ1 −

√
2
3φ8, (37)

one finds the matrix elements〈(
ud̄
)
φn

∣∣ud̄〉 =
√

2〈ABC〉 =
√

3
〈(
ud̄
)
φ8
∣∣ud̄〉

=
√

3
2

〈(
ud̄
)
φ1
∣∣ud̄〉 and〈(

ud̄
)
φs

∣∣ud̄〉 = 0. (38)

Besides the multiplicative factor of 24 which is discussed in
Sect. 6, (38) establishes the relation between the values
given in the first line of Table 4 and the values given in
Table 5 for the following matrix elements:

〈πηn |a0 〉 =
√

24
√

3〈t8 |t 〉 =
√

2
3 and

〈πηs |a0 〉 = 0. (39)

For the coupling of an isodoublet lowest-lying scalar me-
son to the isodoublet–isoscalar pair, we may also select
representants. Let us consider the matrix element

〈(us̄)φ |us̄ 〉.
In this case, the matrix element for the dd̄ contribution
vanishes. Consequently, for the isoscalar flavour singlets
and octets, we end up with

〈(us̄)φ1 |us̄ 〉 =
√

4
3 〈ABC〉 and

〈(us̄)φ8 |us̄ 〉 = −
√

1
6 〈ABC〉, (40)

which explains the factor 8 in Table 4 for the quadratic
matrix elements under d8 and d1, in the sector under
isodoublets.

From (40), we obtain for the ideally mixed combina-
tions (37) the relations



E. van Beveren, G. Rupp: Flavour symmetry of mesonic decay couplings 727

〈(us̄)φn |us̄ 〉 =
√

1
2 〈BAC〉 =

√
3
8 〈(us̄)φ1 |us̄ 〉 and

〈(us̄)φs |us̄ 〉 = 〈ABC〉 =
√

3
4 〈(us̄)φ1 |us̄ 〉,

which, by the use of the first line of Table 4 and when,
moreover, multiplied by the factor (24)1/2, gives the ma-
trix elements of κ → Kηn and κ → Kηs, i.e.,

〈Kηn |κ 〉 =
√

24
√

3
8 〈d1 |d 〉 =

√
1
6 and

〈Kηs |κ 〉 =
√

24
√

3
4 〈d1 |d 〉 =

√
1
3 ,

the quadratic sum (=
1
2
) of which is found for model B86

in Table 5.
Now, according to (17), for the couplings of lowest-

lying scalar isoscalars to meson pairs, the normalisation
may be not unity. Let us begin with the coupling to a pair
of isotriplets, e.g. 〈(

ud̄
)
(dū) |φ〉.

When φ represents a flavour-singlet isoscalar, then, also
using (17) and (33), one finds

〈(
ud̄
)
(dū) |φ1

〉
=
〈(
ud̄
)
(dū)

∣∣∣√ 1
3

(
uū+ dd̄+ ss̄

)〉
=
√

1
3

{ 〈ABC〉√
2

+
〈BAC〉√

2

}

=
√

2
3 〈ABC〉,

whereas, when φ represents a flavour-octet isoscalar, it
follows that

〈(
ud̄
)
(dū) |φ8

〉
=
√

1
6 {〈ABC〉 + 〈BAC〉} =

√
2
3 〈ABC〉.

Indeed, in Table 4 the quadratic matrix elements under tt
in the sector for the flavour-octet isoscalars are the same
as in the sector for the flavour-singlet isoscalars.

For the ideally mixed combination (37), also applying
formulae (17) and (33), one obtains

〈(
ud̄
)
(dū) |φn

〉
=
√

1
2


 〈ABC〉√

5
3

+
〈BAC〉√

5
3




=
√

6
5 〈ABC〉 =

√
9
5

〈(
ud̄
)
(dū) |φ1

〉
. (41)

When, moreover, multiplied by the factor (24)1/2, (41)
establishes the relation between the first line of Table 4
and the matrix element of ηn → ππ, according to

〈ππ |ηn 〉 =
√

24
√

9
5 〈tt |φ1 〉 =

√
3
5 ,

as is found for model B86 in Table 5.

Next, let us also study the coupling of isoscalars to a
pair of isodoublets, e.g.

〈(us̄) (sū) |φ 〉.
When φ represents a flavour-singlet isoscalar, then,

again through the use of (17) and (33), we have

〈(us̄) (sū) |φ1 〉 =
√

1
3

{ 〈ABC〉√
2

+
〈BAC〉√

2

}

=
√

2
3 〈ABC〉. (42)

Similarly, for a flavour-octet isoscalar we find

〈(us̄) (sū) |φ8 〉 =
√

1
6 {〈ABC〉 − 2〈BAC〉}

= −
√

1
6 〈ABC〉, (43)

which result explains the factor 1/4 in Table 4 between
the quadratic matrix elements under dd in the sectors
for the flavour-octet isoscalars and for the flavour-singlet
isoscalars.

For the ideally mixed isoscalars defined in (37), using
once again (17), we obtain

〈(us̄) (sū) |φn 〉 =
√

1
2
〈ABC〉√

5
3

=
√

3
10 〈ABC〉

=
√

9
20 〈(us̄) (sū) |φ1 〉 and

〈(us̄) (sū) |φs 〉 =
√

1
2
〈BAC〉√

4
3

=
√

3
4 〈ABC〉

=
√

9
8 〈(us̄) (sū) |φ1 〉,

which nicely explains the values for the matrix elements
of (ηn/ηs) → KK̄, i.e.,

〈
KK̄ |ηn

〉
=

√
24
√

9
20 〈dd |φ1 〉 =

√
1
5 and〈

KK̄ |ηs

〉
=

√
24
√

9
8 〈dd |φ1 〉 =

√
1
2 , (44)

given for model B86 in Table 5.
Similar straightforward calculations lead to the matrix

elements 〈ηnηn |ηn 〉 and 〈ηsηs |ηs 〉.
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